PARALYMPIC ATHLETES COMPETING IN EXTREME CONDITIONS

2010 – NPC Team Physician Conference

Russ O'Connor MD, FRCPC (PMR), Dip Sport Med CASM

Overview

- Trauma and Injury patterns and rates
- Resuscitation issues
- Altitude
- Cold exposure

Injury Epidemiology

- Limited data compared with able-bodied athletic injuries
- 2002 Salt Lake Paralympic Injury survey
- 2006 Torino Paralympic injury survey
- Non-scientific survey of Canada athletes
- Similar overall sport medicine and trauma injuries as in able-bodied alpine

Games Comparison

	Alpine Skiing	Nordic Skiing	Sledge Hockey	Wheel- chair Curling	Total
Salt Lake	194 (12%)	134 (3%)	88 (14%)	-	416
Torino	190 (12%)	132 (4%)	132 (11%)	<mark>4</mark> 0	474

OVERALL INJURY RATE

9% Salt Lake

8% Torino

Comparison of Injuries from Two Paralympic Winter Games: Salt Lake 2002 & Torino 2006 Webborn, N1,2 Willick, S3

Salt Lake 2002 Paralympics

- Amongst all Paralympic athletes most common diagnoses were:
 - Sprains (32%)
 - Fractures (21%)
 - Strains and lacerations (14% each)
- Amongst Para-Alpine athletes:
 - Upper extremity injury 33%
 - Lower extremity injury 38%

Torino 2006 Paralympics

- Within Para-alpine:
 - 78% acute traumatic injury
 - 22% overuse or chronic injury
 - 53% upper extremity, 80% were sit skiers
 - 26% lower extremity, all standing

Webborn, N., Willick, C. and Reeser, J. C. (2006) Injuries among disabled athletes during the 2002 Winter Paralympic Games. Medicine & Science in Sports & Exercise, 38 (5). pp. 811--815.

Altitude

- High alt 1500- 3500m very high 3500-5500m
- Normal response to altitude and hypoxia
 - Increased ventilation
 - SOB on exertion
 - Altered breathing at night secondary to low levels of CO2
 - Diuresis
 - Disturbed sleep

Altitude

- High alt 1500- 3500m very high 3500-5500m
- Normal response to altitude and hypoxia
 - Increased ventilation
 - SOB on exertion
 - Altered breathing at night
 - Diuresis
 - Disturbed sleep

Acute Mountain Sickness

- Due lack of acclimatization to hypoxia
- Ideal altitude is the altitude you last slept
- Above this is a zone altitude to which your body can tolerate the increased hypoxia
- Above this zone the body is not able to compensate for the hypoxia strain
- Develop acute mountain sickness

Acute Mountain Sickness

- Above 2500 m with the following-
 - Headache-
 - Loss of appetite, nausea, or vomiting
 - Fatigue or weakness
 - Dizziness or light-headedness
 - Difficulty sleeping
- AKA BAD HANGOVER
- If you feel unwell and there is no other reason you probably have AMS

Who is at risk

Anyone- genetic, rate of accent

Avoid things that will suppress respiration
 Alcohol
 Narcotics

Sleeping pills

 Can consider prophylaxis with Diamox if regularly get AMS or if ascent rapid

Treatment

Supportive

- Rest (don't go higher and decrease O2 demands)
- Fluids
- NSAIDS
- 02
- If symptoms more severe
 - Diamox Acetozolamide

Logistics and Terrain

Just getting there can be risky

Light or UV Exposure

- High altitude
- Reflective surface for nordic and alpine
- UV Keratitis

Need proper eye wear protection

Cold Exposure

- Cold injury
- Exercise and cold induced bronchospasm

Hypothermia

- Weather, clothing, hydration, hypoglycemia
- Athlete factors fat composition, muscle mass,
 SCI– impaired thermoregulation

Hypothermia

Prevention is key!

- Follow the C-O-L-D clothing principle:
- Clean
- Open when exercising to reduce sweating/wetness
- Loose/Layers to retain heat
- Dry to limit conductive heat loss

Acute and Chronic neck and arm injuries are very common

Hard to rest!

Pressure sores or Sit wounds (travel)

SIT SKIERS

- Bowel and bladder
 - Most athletes volume restrict during training days
 - Timing of bowel care can be an issue
- Autonomic Dysreflexia less of an issue as athletes on most teams below T6 for alpine

STANDING SKIERS

- Chronic Musculoskeletal problems
 - Asymmetric gait
 - Overuse problems
 - Neurologic patterning
- Acute Musculoskeletal injuries similar to able bodied:
 - knee, hip, shoulder, back, neck
 - Concussion
- Residual limb hygiene

VISUALLY IMPAIRED

- 100% injured 2008/9
- 75% > out for >1 month
- Rate of injury highest
- Causes? multiple concussions, balance impairment, knee and ankle injuries

Canadian - Injury Patterns 2009-10

- 69% = 9/13 athletes injured
- 23% = 3/13 athletes injured > 1 month
- Total of 14months off snow and competition
 Concussion, Rotator cuff, pressure on hill
 pressure sore, hip fracture off hill

On-hill Dx and Management

- Assessment of insensate athletes with careful 2* survey
- Sit-skier extraction
- Mindful environmental exposure
- Volume resuscitation (especially sit-skier)

Conclusion

- Paralympic winter athletes compete in adverse conditions and are at risk of-
 - Cold exposure or injury
 - Altitude sickness but no more than able bodied athlete
 - High rates of injury in sports like alpine and sledge hockey
 - 12% athletes at major games and the majority of team over a season (69%
- High index of suspicion for injury in insensate athlete

Thank-you!

Acknowledgements:

Dr. Van de Vliet, Willick, and Webborn